Phi-Functions for 2D Objects Formed by Line Segments and Circular Arcs
نویسندگان
چکیده
We study the cutting and packing C&P problems in two dimensions by using phi-functions. Our phi-functions describe the layout of given objects; they allow us to construct a mathematical model inwhich C&P problems become constrained optimization problems. Herewe define for the first time a complete class of basic phi-functions which allow us to derive phi-functions for all 2D objects that are formed by linear segments and circular arcs. Our phi-functions support translations and rotations of objects. In order to deal with restrictions onminimal ormaximal distances between objects, we also propose adjusted phi-functions. Our phi-functions are expressed by simple linear and quadratic formulas without radicals. The use of radical-free phi-functions allows us to increase efficiency of optimization algorithms. We include several model examples.
منابع مشابه
LINE-SEGMENTS CRITICAL SLIP SURFACE IN EARTH SLOPES USING AN OPTIMIZATION METHOD
In this paper the factor of safety (FS) and critical line-segments slip surface obtained by the Alternating Variable Local Gradient (AVLG) optimization method was presented as a new topic in 2D. Results revealed that the percentage of reduction in the FS obtained by switching from a circular shape to line segments was higher with the AVLG method than other methods. The 2D-AVLG optimization meth...
متن کاملContainment of a pair of rotating objects within a container of minimal area or perimeter
Cutting and packing problems arise in many fields of applications and theory. When dealing with irregular objects, an important subproblem is the identification of the optimal clustering of two objects. Within this paper we consider the case, where two irregular one-connected objects whose frontier formed by circular and/or line segments and which can be free rotated, should be placed such that...
متن کاملOptimal clustering of a pair of irregular objects
Cutting and packing problems arise in many fields of applications and theory. When dealing with irregular objects, an important subproblem is the identification of the optimal clustering of two objects. Within this paper we consider a container (rectangle, circle, convex polygon) of variable sizes and two irregular objects bounded by circular arcs and/or line segments, that can be continuously ...
متن کاملDrawing trees and triangulations with few geometric primitives
We define the visual complexity of a plane graph drawing to be the number of geometric objects needed to represent all its edges. In particular, one object may represent multiple edges (e.g. you need only one line segment to draw two collinear edges of the same vertex). We show that trees can be drawn with 3n/4 straight-line segments on a polynomial grid, and with n/2 straight-line segments on ...
متن کاملTopology-oriented incremental computation of Voronoi diagrams of circular arcs and straight-line segments
We introduce an algorithm for computing Voronoi diagrams of points, straight-line segments and circular arcs in the two-dimensional Euclidean plane. Based on a randomized incremental insertion, we achieve a Voronoi algorithm that runs in expected time O(n log n) for a total of n points, segments and arcs, if at most a constant number of segments and arcs is incident upon every point. Our theore...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. Operations Research
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012